Once you have opened a Maxima session, load package draw:
load("draw") $
To read the documentation on object parametric, write the following sentence:
describe(parametric) $
Parametric and explicit functions:
draw2d( color = ReD, /* case insensitive */ explicit(exp(x),x,-1,3), color = "#0000Ff", key = "This is the parametric one!!", parametric(2*cos(rrr),rrr^2,rrr,0,2*%pi))$
Transforming a parametric function:
para : parametric(2*cos(r),r,r,0,2*%pi) $ draw2d( para, transform = [v+6,u,u,v], color = red, para)$
Parametric 3D curves can be rendered with a colored 4th dimension. This feature is a contribution by Joan Pau Beltran:
draw3d( terminal = wxt, color = blue, nticks = 60, line_width = 3, enhanced3d = (u-1)^2, parametric(cos(5*u)^2,sin(7*u),u-2,u,0,2)) $
A parametric curve is defined in terms of one parameter; we can define color numbers with respect to it. Also, we can define color numbers in terms of coordinates (x, y, z):
set_draw_defaults( nticks = 60, line_width = 3, view = [63,74])$ par_fun: parametric(sin(u)^2,cos(u),u,u,0,4*%pi)$ c1: gr3d( /* we can select any parameter name */ enhanced3d = [(k-1)^2,k], par_fun) $ c2: gr3d( /* coordinate names are also arbitrary */ enhanced3d = [if yy>= 0 then 1 else 0, xx, yy, zz], par_fun) $ draw(dimensions = [350,700], c1, c2, columns = 1)$
© 2011-2016, TecnoStats.